Feeds:
Posts
Comments

Archive for the ‘inquiry’ Category

After splurging on Christmas gifts for the family, I was in a thrifty mood when surfing Amazon to find some new reading material for the break. So I checked out the free options in the Kindle store for science education books. Unfortunately there’s not much out there besides a few textbooks and Ontario school manuals, but one gem I discovered was Science and Education by Thomas Henry Huxley. To save you the trouble of checking Wikipedia: Huxley was an English biologist in the 19th century and is known for being a fierce advocate of Darwin’s theory of evolution, earning him the nickname “Darwin’s Bulldog”. He also coined the term “agnostic” to describe his views on the existence of God, and thanks in part to his efforts science became part of the British school curriculum.

The book Science and Education is really a collection of orations and essays that he gave discussing the nature of the sciences, its relationship with culture and relation, and why science should be taught in schools. A lot of the speeches seem dated (there are some cringe-worthy lines about race and intelligence in particular), but two stand out: one entitled “On the educational value of the natural history sciences” (the full text is available here), and “Science education: notes of an after-dinner speech” (full text). In regards to science education they are both so spot-on they could have almost been written today. So what did a guy in 1854 have to say about science education before it was even introduced into the school system? Check out these quotes…

“Science is, I believe, nothing but trained and organised common sense, differing from the latter only as a veteran may differ from a raw recruit: and its methods differ from those of common sense only so far as the guardsman’s cut and thrust differ from the manner in which a savage wields his club….The man of science, in fact, simply uses with scrupulous exactness the methods which we all, habitually and at every moment, use carelessly”

Putting aside the “savage” metaphor, Huxley makes clear that the method of scientific thinking is nothing extraordinary, it employs the same critical thinking and logic people use on an everyday basis, it is only the discipline and training through repeated use that makes scientific thinking so effective. In other words- scientific thinking is innate to all of us and can be taught to anyone.

On the issue of whether young children can or should learn about about science:

“I doubt whether any toy would be so acceptable to young children as a vivarium of the same kind as, but of course on a smaller scale than, those admirable devices in the Zoological Gardens.”

As I have already said, a child seeks for information about matters of physical science as soon as it begins to talk.”

“And  if not snubbed and stunted by being told not to ask foolish questions, there is no limit to the intellectual craving of a young child; nor any bounds to the slow, but solid, accretion of knowledge and development of the thinking faculty in this way.”

As an elementary science educator, is always surprising that even today there are those who don’t understand the appropriateness of science education for young children. So many people forget how utterly instinctive a child’s curiosity and urge to investigate is. A science education that taps into these instincts and develops them into knowledge and skills is obviously appropriate (and necessary) at any level.

OK- so far so good Mr. Huxley, but what exactly should be taught? What do you 19th century guys know about standards and benchmark?

“I do not mean that every schoolboy should be taught everything in science. That would be a very absurd thing to conceive, and a very mischievous thing to attempt. What I mean is, that no boy nor girl should leave school without possessing a grasp of the general character of science, and without having been disciplined, more or less, in the methods of all sciences; so that, when turned into the world to make their own way, they shall be prepared to face scientific problems, not by knowing at once the conditions of every problem, or by being able at once to solve it; but by being familiar with the general current of scientific thought, and by being able to apply the methods of science in the proper way, when they have acquainted themselves with the conditions of the special problem.”

Touche. Huxley goes on to describe an ideal scientific curriculum that begins in elementary with studying the phenomena of Nature (kind of like combined Earth and Life sciences) to deal with questions of the observable world. Then as students writing, reading, and mathematics skills improves with age he advocates for “physical sciences” to be introduced, including experimental physics and fields of biology such as botany, with a dash of chemistry and human physiology. Not too shabby.

And what about pedagogy? Surely someone writing over 150 years ago had a very different perspective than our enlightened educational understanding today… right??

“If the great benefits of scientific training are sought, it is essential that such training should be real: that is to say, that the mind of the scholar should be brought into direct relation with fact, that he should not merely be told a thing, but made to see by the use of his own intellect and  ability that the thing is so and no otherwise.”

“But if scientific training is to yield its most eminent results, it must, I repeat, be made practical. That is to say, in explaining to a child the general phænomena of Nature, you must, as far as possible, give reality to your teaching by object-lessons; in teaching him botany, he must handle the plants and dissect the flowers for himself; in teaching him physics and chemistry, you must not be solicitous to fill him with information, but you must be careful that what he learns he knows of his own knowledge. Don’t be satisfied with telling him that a magnet attracts iron. Let him see that it does; let him feel the pull of the one upon the other for himself. And, especially, tell him that it is his duty to doubt until he is compelled, by the absolute authority of Nature, to believe that which is written in books.”

Thud! **Jaw hits the floor** This was the icing on the cake for me- Huxley, in 1869 mind you, is literally describing constructive learning theory and advocating for an inquiry-based approach to science education. And this is of course, before there even was such a thing as science education. It was even taught in schools yet, and Huxley himself was basically self-educated. Perhaps that’s why he could see the issue so clearly- his opinion was clouded by any educational traditions or assumptions. In fact the traditional education of the time consisted entirely of rote learning and memorization via books, so he was well aware of the limitations of this.

It’s clear that Huxley was a man ahead of his time, but also the fact that his words resonate so well today underscores just how self-evident this approach to science education is. Yes, we have a body of educational research today that confirms best-practices, and we’ve invented a whole language of educational jargon to go along with it, but if the best approach to science education was obvious to someone 150 years ago, then it should be pretty freakin’ clear to us by now! So the next time someone starts waxing on about today’s educational reforms in inquiry-based science, you just tell ’em about Darwin’s bulldog, who figured it out before science education even existed.

Read Full Post »

and no teacher hears it, what’s the point of putting together the workshop in the first place?

Or at least that’s how I felt last week when a grand total of 1 teacher showed up for my after school PLOT (Professional Learning Opportunities for Teachers) workshop about revising the scientific method. But even if the workshop didn’t happen quite as I had imagined it- with lively dialogue and moments of hands-on discovery- at least I can share it here, on the blog I’ve been neglecting so badly the past month. Here’s how the Scientific Method Makeover workshop was supposed to go down…

I’ve already detailed my thoughts behind revising and updating the tired and unrealistic scientific method on this post, so I won’t repeat myself here. Suffice it to say that the scientific method we learned as kids needs a makeover, but I do believe in teaching the process of science- as long as it’s flexible enough to incorporate the different ways scientists actually learn. My attempt at improvement is the scientific cycle:

How does this cycle work? Let’s put it into action and find out! Since it’s getting a little cold these days in Qatar (down into the 60s at night- brrrr!) everyone’s probably wondering where they stashed their portable electric heaters (buildings in Qatar don’t have centralized heat for obvious reasons). But how does an electric heater really work? We have your question– Boom! The scientific cycle commences, this time for a bout of secondary-source learning, aka research. Before diving into Google, I have teachers take a step back in the cycle and try to pre-explain how an electric heater works. Getting those preconceptions out there is important to encourage further questions and critical thought about any misconceptions that might exists. Got a vague and probably incorrect notion of how they work?? Great- back to Google, let’s investigate.

I give teachers a few guiding research questions to investigate on their own, then and there on their laptops:

  • How do electric heaters work?
  • What are electric heaters made of? (in particular the heating element)
  • How does electrical energy turn into heat energy?

Now everyone’s research and comprehension will be a little different, so to analyze their research findings I have teachers share and compare in small groups for a few minutes. Really, they’re a doing a synthesis of their research- compiling information from different sources and reconciling any discrepancies, which in turn gives them a better understanding of the “data”, in this case their research.

To explain I have them draw and label a picture explaining how an electric heater works. Better understanding than your pre-explanation? You betcha. In a nutshell, that was a much-simplified scientific round of research. It’s important to note that it might not be such a clean flowing cycle though- new questions could come up and cause a scientist to go back and re-investigate, or compare findings with someone else to re-analyze. But the general process is there: question-investigate-analyze-explain.

But wait- what about experimentation and all that? Let’s do another round of the cycle, but this time it’s hands-on. How do scientists answer a question when there’s nothing in the research to help? Let’s do an experimental cycle…

I show the teachers how a coil of wire attached to a D-cell battery creates a very simple electric heater (similar to the electromagnet circuit at right, except no nail necessary, wrap around a thermometer bulb instead). Technically it’s a short circuit, so the current is trying to race through, only slowed by the resistance in the wire, which generates heat. Hmmm… I wonder if it matters what kind of wire we use- some are thicker, some are thinner. Which wire would make the best heater? As before, let’s make a prediction, our pre-explanation, which we will revisit and revise later. And we’re off, investigating by having teachers creating a quick controlled experiment, something to the tune of comparing the different thicknesses of wire (but same length) in identical circuits, and wrapping the coils around thermometers to measure the temperature increase.

After 60 seconds of heating we’ve got some data, let’s analyze: in this case we can use mathematics to add different groups of teachers’ data together and find the mean for each thickness of wire. This has the same effect of doing repeated trials for accuracy (as long as we did a decent job controlling variables). A few calculations, and what do we find…. Try it yourself! Sorry, the elementary teacher in me just can’t spoil the excitement of discovery for you. Just try it out- I was excited myself to discover the difference, especially when it started to make sense, which brings us to…

Explain by writing a conclusion statement, supporting your claim with evidence. And there you have it, two complete tours of the scientific cycle in under an hour, with hopefully a demonstration of how versatile and useful the scientific cycle is as a new-and-improved scientific method. Whether you’re doing research-based investigations or experimental ones, the same general process applies. So the cycle is a framework, reminding students of the importance of making predictions (pre-explain), critical thinking (analyze) and meaning-making (explain). It also serves as a reminder of the cyclical process of scientific learning, as one question leads to another. The scientific skills at each step can vary, and with practice students could even learn to decide which skill would be appropriate to use as the learning demands.

End scene. I’m still wondering how this workshop would actually fly in real life, but in the meantime I’d be satisfied with any thoughts or comments you have (especially if you try your own electric heater experiment!).

 

Read Full Post »

One of my responsibilities as elementary science coordinator is to be a mentor to homeroom teachers and help them become better at teaching science. I must admit this is probably the hardest part of my job- it’s one thing to be critical of yourself and work to improve your teaching, but teaching teachers, that’s a different story. Up till this point most of my mentoring has consisted of leading by example, teaching model science lessons in our science labs, which is well inside my comfort zone. But I know in order to take our program to the next level I’ll have to do more: instead of being just the captain of the team, I need to be a coach.

Science coaching (as well as coaching in other disciplines) is pretty trendy right now in elementary ed. However, there seem to be many different varieties out there, and I’m going to need to figure out the recipe that works best at my school. Here are what I believe to be the key ingredients:

  • Model teaching
  • Providing professional resources
  • Teacher observation and consulting
  • Facilitating learning activities
I’m not going to delve into model teaching, because I already do plenty of that, and frankly that’s just regular teaching with another adult in the room. At first I guess it was strange, but once you realize your both on the same team ,it’s actually much better having another teacher with you.
Providing professional resources is easy as well, but probably the least effective ingredient. Just think of all the required readings or faculty “book studies”… in my experience they result in a lot of last-minute skimming and shallow conversations. Good for creating a common language around a new initiative, but not sufficient to reach any meaningful depth. Nevertheless, I’m kind of a professional reading nerd, so I continue to give teachers at my school excerpts from my favorite summer reading each year. One year I put a small note at the end of the reading, asking anyone who finished it to let me know what they thought… still waiting for a response. There are other options out there more interactive than readings, such as NSTA’s Learning Center where teachers can take mini-course online by themselves to brush up on their background knowledge, but I’m not sure how many elementary teachers would have the time or desire.
OK, on to the meaty stuff. Observing teachers can be an intimidating prospect, and also blurring the line between coach and administrator. But I’m going to have to suck it up this year, because nothing embodies the spirit of science coaching more than working directly with teachers on their teaching. Luckily, my school has had some training in an interesting observation protocol called Looking for Learning. You can check out their website for more info, but the basic principle behind this kind of observation is that instead of observing the teacher, your main focus is observing the students. So while students are engaged in an activity you conduct mini-interviews from student to student, aiming to get a grasp of how much learning is actually taking place during the activity. Of course this is all in the context of what the teacher is doing, and how they’ve structured their class. What makes it an interesting approach is that sometimes even when classes appear to be busy learning, there’s not actually a lot of learning taking place (or at least not the kind the teacher intended). The follow-up conversations with the observer and teacher are also interesting as the two compare notes on how they perceived the engagement and learning of different students in the class. Because the focus is on the students, it seems less confrontational, but the approach remains effective because the responsibility of the teacher to ensure all students are learning is clearly implied- if learning wasn’t taking place the next step is to look at what can be done in the future to change that. As with reading professional resources, the effectiveness of observations and consulting will depend on teacher buy-in. So I’m planning on initiating these with teachers who I think would be most receptive initially, and then depend on good word-of-mouth to involve others.
Last but not least, there’s the learning activities, which is just code for getting teachers messy with hands-on science in an attempt to spark those deeper conversations and thoughts about inquiry and pedagogy. When I think back to my favorite professional development experiences (the Dana Hall Science Workshop and a graduate class on experimental design at the University of Maryland), both of them were so stimulating simply because we were expected to do science as a student while thinking like a teacher. The common experiences of searching the beach for fossilized shark teeth and building a water tower of toothpicks led to much more lively and focused discussion between colleagues than any reading I’ve ever done. So I hope to recreate that in some small way for the teachers at my school, letting them dive into a hands on activity with the eagerness of a student, and then encouraging them to process it through the eyes of a teacher. Whether it’s possible to do this successfully in short sessions at the end of a long day with a bunch of familiar faces…. we’ll see!
So there you have it, another work in progress. 🙂 I’ll post more as the plan becomes clearer- in the meantime I’d love to hear from folks who have had successful in-school PD or coaching in the past. Despite these best-laid plans, I’ll probably need to focus my time in a couple of these 4 areas, and it would be helpful to get some idea where to throw my weight.

Read Full Post »

Call it whatever you want: scientific inquiry skills, practices of scientists, the scientific method- all science teachers are aware of the value of teaching skills as well as content knowledge. But I would go a step further and say that scientific skills are the most important thing our students can learn. Even if my students remember none of the scientific facts or concepts they learned in school, if as adults they are able to think critically like a scientist, then I think this world will be alright. As Carl Sagan puts it so eloquently in his brilliant manifesto about the importance of scientific literacy: “The method of science, as stodgy and grumpy as it may seem, is far more important than the findings of science.” (pg. 22) 

It used to be a simple matter teaching scientific skills, back when they were all packaged up neatly in the “Scientific Method”. I’m sure almost all of us had those steps hammered into our skulls lab after lab after lab: question, hypothesis, procedure… zzzzzz. Of course it was mind-numbingly dull to experience science in that over-simplified, lock-step fashion, not to mention completely wrong. Science doesn’t actually work that way- they don’t follow any standardized linear method. A recent study (Reiff et al., 2002) of how scientists actually do science was revealing: although there were many common skills and practices, there was no clearly defined path or order. So to describe the real scientific method the researchers created this “inquiry wheel”:

When I read about the inquiry wheel in grad school, I was more surprised with the similarities it shared with the old-school scientific method than the differences. It seemed like a mere repackaging of the same old method,with just a breaking down of its stale step-by-step order.  I wondered if by making the scientific method a thing of the past, we teachers would  throw the baby out with the bathwater in our eagerness to purge it from our pedagogy. If we aren’t going to teach the scientific method to students, then how will we present the many practices that scientists use and students should surely learn? While this wheel might paint a more accurate picture, it didn’t appeal to me as an educator for use with my students.

For all of its flaws, I believe the scientific method successfully models one approach to doing science for students.  So what I’d like to do is give that model a makeover- and create something that simply structures the process of doing science while also allowing for the flexibility that reflects real practice. Behold, the Scientific Cycle! 

To create the Scientific Cycle I’ve taken the familiar scientific skills of the Scientific Method, synthesized them with an updated version of “science and engineering practices” from the framework for new education standards in the US, and framed them in a simple cyclical process, inspired by the inquiry wheel. Like the wheel I’ve put Asking Questions at the center of the whole thing, because questioning is at heart of science and can be done at any stage in the process. However, unlike the wheel, I favored a cycle as opposed to keeping it totally non-linear, because I believe the general process of Investigate-Analyze-Explain is a beneficial simplification for students. What you lose in realism you gain in students being able to learn and internalize the process.

By far my favorite aspect of the Cycle is the flexibly of the specific skills involved. In the classroom I plan on starting with the Cycle blank, like this: 

Then as we investigate a concept, we can highlight the skill we’re focusing on by adding it to the cycle. This skills might be different depending on the type of investigation: in one case we might investigate a question by planning and conducting a controlled experiment, analyzing and interpreting the data with the use of a graph, and then explaining the results by writing a conclusion. In another we might investigate by conducting some research, analyze by comparing the information found from various sources, and then explain by debating the answer to our question. So whether you’re researching, observing, experimenting, or just exploring, the Cycle still works and provides a good framework for scientific skills, while also teaching students that scientists approach questions in different ways.

Whaddaya think? What would you change/add/remove? Does this fit at different levels and in different subjects? The Cycle has been percolating in my mind for quite some time, so it would be great to get some feedback from other teachers.

Read Full Post »

« Newer Posts