Feeds:
Posts
Comments

Archive for the ‘science framework’ Category

Back in April, we hosted a Science Collaborative Workshop with 21 PreK-8 science teachers from 5 international schools. (Check out these previous posts if you’re interested in the planning process or my take-aways from organizing the event.)  Since we all use the same AERO science standards, one of our goals was to work together to create standards-based science units that could be used as exemplars for other international schools. We nearly accomplished that in the span of the 3-day workshop, but making these units accessible (and legible) on a website took over a month of continued collaboration remotely (and a little bit of arm twisting on my part!)

I’m happy to announce that these exemplar science units are now published and freely available on our website www.AERO-Science.org. The seven units are:

Please take a look and let me know what you think of our work! Each of the units was designed using the Understanding by Design approach and was a collaborative effort between teachers from different schools.

Next fall we will be holding a follow-up workshop at the NESA Fall Training Institute to continue and expand this collaborative project, so if you also teach at an AERO school, please join us!

Advertisement

Read Full Post »

After months of delays it’s finally here! On Friday the draft of the Next Generation Science Standards was released, open for public feedback until June 1st. Since these standards could become the equivalent of a US national science curriculum (similar to the Common Core for Math and Language Arts)- it’s kind of a big deal. And yet I haven’t found much of anything out there on the internets in the way of reactions or discussion, positive or negative, about the new standards. So if you teach K-12 science, go check them out and let’s start the conversation now instead of grumbling for years after about what we don’t like. Here’s my initial reactions on the elementary school portion, both the good and the bad:

Good intentions

The Next Gen standards are based on the National Research Council’s Framework for K-12 Science Education. If you’ve read any of the NRC’s outstanding books on science education and learning in general, then you know that their work synthesizes the huge body of decades of research on learning. So they know what they are talking about! The NRC’s Framework proposed that new science standards have to include 3 elements: core content, scientific practices, and cross-cutting concepts. In other words, they recommended that the standards be focused on only the most important scientific content (to avoid the “mile wide and inch deep” curriculum), and put this content on equal footing with learning skills and big, interdisciplinary ideas that cut across different fields (such as patterns and cycles). Since past standards usually get caught up in the content (and lots of it), this is a big shift.

How well do the Next Gen standards realize the Framework‘s vision? On the surface- very well! Each performance expectation in the standards is written with the practices, content, and cross-cutting concepts included in the sentence itself. For example, here’s a performance expectation for a 1st grade about plants and animals: “Obtain and share information to explain that patterns of behaviors between parents and offspring promote survival“. The skills (obtaining and sharing information) and the cross-cutting concept (patterns of behaviors) is right there, being used to describe the core content. In this way, teachers can go ahead and get myopic about the standards wording, because everything is already built into the standard itself. Very clever!

Age appropriate

A clear effort was made to ensure the standards are age-appropriate (unfortunately it looks like this was taken to a fault, but more on that later!) The focus is mostly on macroscopic, observable phenomenon that are easy for kids to investigate in a hands-on way. Often the data to be collected is explicitly qualitative, so that younger students don’t get bogged down in excessive measurement or needless precision. Many of the standards include “boundary statements” which are intended to give a clear idea of what is NOT included in the standard. There are a few items in the elementary standards that will raise your eyebrows about age-appropriateness, but for the most part it seems spot on.

Engineering gets to join the party

As a former engineering student I know I”m biased, but I think it’s great that engineering is finally being included in science standards- and in fact given almost equal weight with science itself! Throughout the standards their are explicit performance expectations for designing, modeling, and applying scientific knowledge to an engineering problem. I’ve always thought of engineering (and used it in my teaching) as the perfect tool for getting students to apply their knowledge and gain a deeper understanding, so it’s wonderful to see someone else agree!

…So far so good, but there are also some major flaws these draft standards that I hope are addressed:

Over-prescriptive performance expectations

The elementary school standards are not banded, but grade-level specific, meaning the standards give specific performance expectations for Kindergarten, 1st grade, 2nd grade, etc. This is problematic for several reasons. First, it is going to make the standards difficult for schools to adopt- and this could even de-rail adoption at a larger national scale. What if your school doesn’t currently teach about sound and light in 1st grade? What if you teach it in 2nd grade or Kindergarten instead? According to the way the standards are written now, schools would have to fall in line with a very specific progression. But why is this level of specificity necessary? It’s difficult to see why some topics must be addressed in one grade but not in another. Since many of the topics are very independent, there’s no obvious or perfect learning progression,so I don’t see why the elementary expectations can just be banded to allow for more flexibility.

Tricky topics

When you read through the Next Gen standards they are organized by “topics”. There are 3 or 4 topics per grade level in elementary, so it’s very easy to think of them as units of study. However, in the introduction to how to read the standards, it states that:  The performance expectations were initially written in topical groupings, but can also be viewed independently.  Topical groupings of performance expectations do not imply a preferred ordering for instruction—nor should all performance expectations under one topic necessarily be taught in one course. 

This is hogwash. Trying to re-imagine the elementary performance expectations in any way other then topic units is like trying to re-create the wheel. Why would anyone bother when it’s already done for you? At first this might seem like a good thing- hey, the standards are finally telling us what units to teach in each grade! But the closer you look at these topics the more you realize that they fall short of good units. Some topics (like the 1st grade Patterns and Cycles) are weak and devoid of enough content to even merit a unit of study. Other topics start out with strong core ideas, but then the list of performance indicators keeps on straying further and further from the main focus. (like the 2nd grade Interdependence topic that tacks on bits random expectations about fossils). If the standards are going to be organized into independent topics that teachers will obviously treat like units, then they need to lend themselves to rich units of study. Which brings me to my last critique…

Still half a mile wide

The Next Gen standards made an attempt to reduce the overwhelming amount of scientific content that most current standards contain and focus on core ideas. But the draft only half achieves this. Many of the topics still read like laundry lists with too much content to be able to investigate and explore topics in depth. This is readily apparent when you start thinking of the topics as units. After 1st grade there are 4 topics per grade level, basically meaning 4 units a year, which is already one more unit that I currently teach each year. There is evidence of a lot of “tacking on” in many of the topics, with performance expectations that don’t fit with the core ideas of the topic. These need to be cut. If the standards are truly going to focus on core ideas, then only core ideas should make the cut. Otherwise the Next Gen standards will only be one step in the right direction, and not the bounding leap that we need instead!

Read Full Post »

Call it whatever you want: scientific inquiry skills, practices of scientists, the scientific method- all science teachers are aware of the value of teaching skills as well as content knowledge. But I would go a step further and say that scientific skills are the most important thing our students can learn. Even if my students remember none of the scientific facts or concepts they learned in school, if as adults they are able to think critically like a scientist, then I think this world will be alright. As Carl Sagan puts it so eloquently in his brilliant manifesto about the importance of scientific literacy: “The method of science, as stodgy and grumpy as it may seem, is far more important than the findings of science.” (pg. 22) 

It used to be a simple matter teaching scientific skills, back when they were all packaged up neatly in the “Scientific Method”. I’m sure almost all of us had those steps hammered into our skulls lab after lab after lab: question, hypothesis, procedure… zzzzzz. Of course it was mind-numbingly dull to experience science in that over-simplified, lock-step fashion, not to mention completely wrong. Science doesn’t actually work that way- they don’t follow any standardized linear method. A recent study (Reiff et al., 2002) of how scientists actually do science was revealing: although there were many common skills and practices, there was no clearly defined path or order. So to describe the real scientific method the researchers created this “inquiry wheel”:

When I read about the inquiry wheel in grad school, I was more surprised with the similarities it shared with the old-school scientific method than the differences. It seemed like a mere repackaging of the same old method,with just a breaking down of its stale step-by-step order.  I wondered if by making the scientific method a thing of the past, we teachers would  throw the baby out with the bathwater in our eagerness to purge it from our pedagogy. If we aren’t going to teach the scientific method to students, then how will we present the many practices that scientists use and students should surely learn? While this wheel might paint a more accurate picture, it didn’t appeal to me as an educator for use with my students.

For all of its flaws, I believe the scientific method successfully models one approach to doing science for students.  So what I’d like to do is give that model a makeover- and create something that simply structures the process of doing science while also allowing for the flexibility that reflects real practice. Behold, the Scientific Cycle! 

To create the Scientific Cycle I’ve taken the familiar scientific skills of the Scientific Method, synthesized them with an updated version of “science and engineering practices” from the framework for new education standards in the US, and framed them in a simple cyclical process, inspired by the inquiry wheel. Like the wheel I’ve put Asking Questions at the center of the whole thing, because questioning is at heart of science and can be done at any stage in the process. However, unlike the wheel, I favored a cycle as opposed to keeping it totally non-linear, because I believe the general process of Investigate-Analyze-Explain is a beneficial simplification for students. What you lose in realism you gain in students being able to learn and internalize the process.

By far my favorite aspect of the Cycle is the flexibly of the specific skills involved. In the classroom I plan on starting with the Cycle blank, like this: 

Then as we investigate a concept, we can highlight the skill we’re focusing on by adding it to the cycle. This skills might be different depending on the type of investigation: in one case we might investigate a question by planning and conducting a controlled experiment, analyzing and interpreting the data with the use of a graph, and then explaining the results by writing a conclusion. In another we might investigate by conducting some research, analyze by comparing the information found from various sources, and then explain by debating the answer to our question. So whether you’re researching, observing, experimenting, or just exploring, the Cycle still works and provides a good framework for scientific skills, while also teaching students that scientists approach questions in different ways.

Whaddaya think? What would you change/add/remove? Does this fit at different levels and in different subjects? The Cycle has been percolating in my mind for quite some time, so it would be great to get some feedback from other teachers.

Read Full Post »

My 3rd graders will be starting of the year with a unit on sound and light, which has always been one of my favorites (so much to play with and observe, and so obviously relevant to students’ lives). The sound part of our unit is pretty heavily based on the FOSS unit Physics of Sound which many teachers are probably familiar with. However, there appear to be some changes coming down the pipeline with the impending national science curriculum and this summer’s release of the K-12 science framework from the NRC (for a primer on this, check out this article from Education Week) The new framework has a new approach to physical science standards that could change the emphasis of units like mine.

Instead of grouping sound and energy under energy standards, as many standards documents have done in the past- the NRC’s committee decided to create a separate physical science standard called “Waves and their applications in technologies for information transfer”. Whoah- that’s a mouthful, but it’s cool to see information technology specifically mentioned. Why call out waves specifically? In the committee’s words on page 88:

This idea is included in recognition of the fact that organizing science instruction around core disciplinary ideas tends to leave out the applications of those ideas. The committee included this fourth idea to stress the interplay of physical science and technology, as well as to expand student’’s understanding of light and sound as mechanisms of both energy transfer and transfer of information between objects that are not in contact.” 

I think this is dead on: even thinking about my own unit, we spend a lot of time playing with tuning forks and flashlights, but very rarely emphasize more technological applications such as speakers or radio waves. I realize there are developmental reasons to keep a sound and light focused on observable, visible phenomenon, but surely there are ways to make technological applications of waves more accessible to elementary and middle school students. Here’s one idea that I’ve used with success in the past to make sound waves visible:

Get a sound microphone probe, such as the one sold by Vernier at right. No need to buy one- I borrowed one from my high school physics department, so ask there first. You’ll also need to borrow the software that goes along with the probe to graph it’s output, for example Logger Pro . Now it’s time to play- get the probe set up to collect data, and put it near an instrument that can create pure tones (a electronic keyboard works well, especially on a setting like “Whistle”). Start collecting data and playing your instrument, and you should see the data graphing from the probe. It will look like a mess at first- so stop recording and play with the axes of the graph. You’ll need to stretch out time on the x-axis because most audible sound waves will be so packed together you won’t be able to see the wave. Once you’ve stretched out the x-axis enough that you can see a wave (like the one pictured ont the left), now comes the fun part! Start collecting data again, and experiment with playing notes at higher and lower pitches as well as louder and softer volumes. Pretty neat, huh? You’ll be able to see exactly how the sound wave  changes- how volume is related to the height of the wave and pitch is related to it’s wavelength (or speed of vibration).

Once you’ve got the hang of it, any invisible sound wave can be made visible… which can lead to all sorts of class investigations. I wish I could find an online version of a sound wave visualizer that utilizes a laptop’s built-in mic, because that could allow many students to work with it at the same time. If anyone out there knows of one- let me know!

Any other ideas out there? How else can traditional teaching of waves be updated to include modern technology applications? I’m all ears!

Read Full Post »