Feeds:
Posts
Comments

Archive for the ‘science teaching’ Category

IMG_2501One of the highlights of my summer was watching my son Graham learn how to ride a bike. He’s only 3 years old- so I was blown away when he took off without training wheels on the 3rd day of riding. I’m pretty sure I didn’t ride a two-wheeler until I was like ten, and that was after many, many knee-skinning spills! How did Graham do it? His secret is using a balance bike and avoiding the pitfalls of “training wheel teaching”, which is a metaphor that I think will serve me well in my own classroom.

Last summer when we were shopping around for a tricycle for Graham, a friend recommended buying a balance bike instead (a bike with only two wheels, but no pedals). They claimed the balance bikes help kids to learn how to balance so well that their own child skipped training wheels and went right to a two-wheeler when they were older. I was intrigued, but a little skeptical: training wheels have been around since the early 1900s helping generation after generation learn how to ride a bike- was there really a better way? The more I looked into it though, the more excitement I found about the benefits of the new balance bike design, and so we bought it (literally and figuratively!). (more…)

Advertisements

Read Full Post »

Another goal of mine with digital notebooks was to enable new forms of collaboration in my classroom. Because digital documents like GoogleDocs allow multiple people to access and edit the same document online at any time, it opens the door to new possibilities for both students and teachers:

1. Colaborating like scientists

Lab work in my classroom is almost always collaborative. Even before going digital my students would work in teams to plan and perform experiments, which encourages scientific communication and cooperation which are authentic science (and life) skills. Using digital science notebooks can take this collaboration a step further, because instead of individually recording in their own paper notebooks, with a digital notebook students can share the same document so that each of them can edit and view each others changes on their own screen. This is wonderful for typically collaborative tasks such as planning a procedure or collecting data. I’ll often have lab teams start with a collaborative document for an experiment so they each have the same document in front of them:

Saturation Puzzle doc

An added benefit of doing this type of group collaboration is that with a digital projector you can quickly turn it into whole class collaboration. Have a group that’s stuck? Display their document for the whole class on the projector and see if anyone has a solution. Have a group that’s doing stellar work? Share it with the whole class as an exemplar.

When it comes time for a more individual task (like writing a conclusion to an experiment) they can copy and paste the group work into their own document, and then finish on their own:

Saturation Puzzle individual

2. Researching as a team

Another collaborative task that is enhanced by technology is researching a subject as a team. This is similar to the classic jigsaw learning approach, except that all the students on a team are editing the same collaborative document. Depending on goal of the learning activity, you can either assign different students specific sub-topics to be responsible for and become an “expert” on them for their team, or you can let the team decide how to divide and conquer the research. Here’s an example of this from my 6th grade earth science unit:

collaborative research

I adapted this first learning activity from a fantastic inquiry-based lesson called Discovering Plate Boundaries developed at Rice University. The multi-part lesson engages students with real maps of relevant plate tectonic information (volcanology, seismology, geography, and geochronology) and challenges them to discover patterns at the boundaries of plates and then classify them. Each student on the team becomes an expert on one of the 4 maps, and then they use their combined understanding to classify all of the major plate boundaries in the world on a collaborative document (I still have them label the map on paper though- it’s just much more efficient for coloring!)

3. Giving feedback to peers

This is something I’ve only scratched the surface of this year, but with more modelling and practice I think it could be a game changer in the classroom. The power of peer feedback is particularly obvious with the Middle School students I work with, and digital notebooks make the process much easier and more flexible. Students can leave comments on each others documents in real-time, even while a student is still working on them. Multiple peers can comment simultaneously on a single document, and the commenting doesn’t need to be done in person- for example it could be assigned for homework. What’s more, students can reply directly to comments, opening up the door for a back-and-forth conversation. I haven’t done enough of this yet in my own classroom, but if you’re interested check out Oliver Quinlan’s post for more details on how to do it well. What I have done a lot of is teacher-student feedback using Google Docs comments, which works extremely well. If students are making edits to a piece of work, I suggest having them make any corrections in a different font color rather than deleting anything. This way students have a nice record of their learning in their notebook and better learn from their mistakes. Here’s an example:

feedback

4.What about plagiarism?

This was another one of my main concerns going digital last year: with most student work online, would the temptation for copy-and-paste plagiarism make it a problem I would have to constantly police? Yes and no. On the front end, for any digital work discussing plagiarism and making expectations clear to students is a must. We did this at the school level and I also reinforced it within my classes. Even so, instances of plagiarism popped up, but in my opinion no more than normally. Digital notebook may make plagiarism easier to do, but it also makes it easier for a teacher to identify. GoogleDocs shows the last editor of a document right in the Drive view and tracks all editors in the revision history. So if a student is editing a document they shouldn’t be (like doing someone else’s homework), it’s plain for the teacher to see. Checking for plagiarized work is easy too- if I’m ever suspicious on a research project I can just Google a sentence of a students work to see if it’s original or not. Same goes in Google Drive- you can search for text within documents, so seeing if a student is using someone else’s words is only a click away. So yes, digital notebooking does make plagiarism more of an issues, but it’s a issue that I think needs to be taught, and digital notbooking allows students to start practicing habits of a good digital citizen.

Read Full Post »

photo[4]For some reason after a few years of blogging, my most popular post remains how to make a human sundial. Just last week I received an email from a PTA president in Texas who actually had a human sundial built at their elementary school and was looking for ideas on how it can be incorporated into their curriculum. Even though I don’t teach elementary school any more, building our human sundial (pictured above) was a blast and there’s some great teachable moments that it can provide. Here’s some ideas:

In Kindergarten we have a science unit about sun and shadows, and one of the learning goals is about how the length of shadows changes during the day. The sundial is a great focal point for this, as classes can visit it in the morning, at lunch, and again in the afternoon and observe the difference in the direction and length of the shadow. Depending on the grade, they could even measure the length of the shadow and compare it to the height of the sun in the sky at that time. It’s a clear way of understanding that the higher the sun is, the shorter the shadow, as well as the idea that the sun moves across the sky and the direction of the shadow changes. After observations, we’ve even done drawing assessments where students predict what the shadow would look like given a position of the sun. You could use an actual picture of your sundial for this, and students could then check their predictions the next day to see how accurately they predicted the length and direction of the shadow. Here’s the link to a hands-on science unit you can buy from Delta Science Education that gave me some of these ideas.
In 5th grade our students study the seasons, which is a good opportunity for students to learn about why you need to stand in different places on the sundial depending on the time of the year. It could even be a good opportunity for a long-term study: each day or once a week in the morning, have students observe the sundial at a particular time, noting the position of the sun (measurements could be made with a compass). Students will begin to see how the position of the sun fluctuates with the seasons, which leads to the idea that some seasons have more direct sunlight (and therefore more heat) than others. Another approach which I wish I could try would be to have no date stones on the sundial at all in the beginning of the year and explain to the 5th graders that you aren’t sure how the sundial works. Then you could give the students the job of “calibrating” the sundial, visiting it at the same time each day and marking where they need to stand to make the shadow point to the accurate time. After a few months they would begin to notice the analemma (the shape that represents the changing position of the sun, pictured below) and it’s this shape that allows you to know where to stand exactly to make the sundial work. Here’s a kid’s science site I found about someone who actually tried this with really neat results!

Image from Stanford Solar Center

Read Full Post »

In my last post about reinventing science notebooks, I described my summer project to introduce digital versions of the traditional science notebook with my students next fall. Before I get into the nitty gritty techie side of how to do this, I’d like to state my goals for these digital science notebooks. Although I’m currently leaning toward a Google Apps/Google Sites combination for these digital notebooks, I’m not wedding to any technology in particular, and if anyone out there has a better idea for what tool could accomplish these goals, I’m all ears! So here goes:

#1: Help students stay organized, easily

Middle School students are notoriously bad at organization, so I’m looking for a solution that will make it easy for students keep assorted types of documents organized. Just like a 3-ring binder could have sections for homework, notes, lab work, project research, I want their digital notebooks to keep things orderly, well labeled, and chronological. Unlike a 3-ring binder I don’t want students to waste a lot of time hole-punching, sorting, and still ultimately misplacing their documents!

#2: Share students’ learning like a portfolio

We do student led conferences at my school, and it’s a powerful experience for students to share their learning and reflect about their learning with their parents. The past few years we’ve had students set up an “e-Portfolio” using a GoogleSite, so they can put all of their evidence and reflections in one place, but this is a time-consuming task. As long as it is set up in an attractive, reflective way, a digital notebook could double as an e-portfolio.

#3: Enable and encourage collaborative learning

Most science classrooms are naturally collaborative, but the collaboration doesn’t need to end at the lab table. Tools such as Google Docs make it easy for students to share work and ideas with others, as well as comment and build on each others ideas. A good digital notebook should allow for different types of collaboration (peer, small group, whole class) as well as allow for some documents to be private when collaboration isn’t appropriate.

#4: Connect students with learning resources

This is something that can really set digital notebooks apart from their papery counterparts: the ability to link up students with learning resources that can help them either review or extend their learning. Imagine a student finishes up a lab on the properties of solids and liquids, but they’ve still got some questions the lab activity didn’t answer. A digital notebook could allow the teacher to provide links to different online resources for the student to explore further. There could be links to similar content for the struggling student to review as well as links to new material to challenge those students that are ready to move on.

#5: Give students more feedback about their learning

This last goal might be the most challenging but also the most important. With traditional science notebooks the teacher could periodically collect the notebooks and write feedback to students, but we teachers know  how time-consuming that is. I began this past year with a goal of giving more formative assessment-type feedback to my students, but it became challenging to keep up with the pace. The more immediate feedback is, the greater the impact it will have on student learning, so a good digital notebook could help provide additional opportunities for learning feedback, as well a keeping a record of their progress. I’m imagining a kind of “learning dashboard” for each student that would keep track of all their learning progress from many types of feedback: graded teacher feedback, practice quizes results, self-reflections. I’m not the first person to think of this (Kahn Academy has a “gameified” learning dashboard, and my school is currently creating one a school-wide one), but I’ve yet to see something that takes advantage of teacher’s online gradebooks and feedback and create a student-friendly summary of their learning progress.

So there you have it. I know it’s an ambitious list, but I think there is a ton of potential in education technology tools that are currently being way under-utilized. Hopefully with the help of like-minded teachers out there, we can move science notebooking into the 21st century where it belongs! 🙂

Read Full Post »

Image

One staple of traditional science education is the scientific notebook: the classic composition notebook filled with kitchen chemistry experiments gone awry, detailed sketches of leaves, and dozens of exciting scientific discoveries written in childhood chicken scratch.

Surprisingly, after 8 years of teaching elementary science and 1 year of middle school science, I’ve never made traditional science notebooks with my students. I’ve always been wary of the potential for notebooks to value product over process, as a few of my own science teachers did: Did you carefully copy the procedure down as I told you? If you did, A+!

Instead I want my students to use their valuable time to think like scientists, not just go through the motions of doing something that appears to be science. So I’ve always opted to create my own worksheets that scaffold activities to save students time on less valuable tasks (copying down a procedure) so they can spend more time on the real learning. In my experience worksheets work very well in the moment, but they lack the portfolio quality of a traditional scientific notebook. Yes, I know you can try to have students keep sheets organized in a folder or a binder, or even try binding them up like books- and some of my colleagues have students paste sheets right into their traditional notebooks- but all of these methods take a lot of effort and class time to be successful. There’s got to be a better way!

Digital science notebooks to the rescue! Making an digital version of traditional science notebooks is an idea I’ve been kicking around for a long time. At first it seems pretty obvious: computerized communication has all but replaced pen and pencil in so many aspects of our daily lives, and there’s no sign of that slowing down. It stands to reason that our current students will be living in a paperless society by the time they are adults- so why can’t science notebooks join this wave of the future?

This is why I was more than a little surprised to find out how few teachers out there in the blogosphere (and scientists too for that matter!) have embraced a digital version of the composition classic. Googling around I could only find one teacher/blogger who has much to say on the subject: Greg Benedis-Grab, and unfortunately his blog on the subject seems to have been taken down (though it’s still cached here). Greg used the Google Apps suite with his students to do nearly all pen and paper tasks (including drawing!) in an online format, and students used a Google Site as their “notebook”. For more info on Greg’s digital science notebooks, check out his webinar video.

What about real scientists? Surely they have embraced modern technology, right? Again, I was surprised to find out in this article from Nature that scientists are only beginning to move away from paper notebooks even though the “electronic lab notebook” has been technologically feasible for more than a decade. However, it does seem pretty clear that many scientists are making the switch to digital notebooks- all the more reason for our students to do it too.

How do teachers make the switch to digital science notebooks? I’m not sure- but it’s my goal this summer to figure out a way, and then pilot the digital science notebooks with my 6th graders in the fall. So if any of you teachers out there are currently using some form of a digital science notebook- I’d love to hear from you! Currently I’m leaning towards a Google Apps/Sites solution since my students are already familiar with these and my school will be using Hapara next year which should make my life easier… but there are still lots of issues (both technical and pedagogical) to figure out. I will continue to blog on my thoughts and progress over the summer, and I welcome you to join in the discussion!

Read Full Post »

As a science teacher committed to inquiry-based learning, I was always wary of teaching excessive vocabulary to students. Scientific words without a strong connection to a real life experience lack meaning for students: sure they can “remember” them for a quiz, but this kind of knowledge is superficial and fleeting. Teaching scientific vocabulary seemed like a waste of time.

Then I learned about word inquiry. Learning the meaning of words doesn’t have to be done by rote memorization, because words have inherent meaning- their specific combination of letters come from somewhere. By breaking a word down into its pieces and learning the origin and meaning of each piece you can learn the meaning of words in an inquiry-based way. In fact, many forward-thinking schools are now taking this approach to learning spelling. Gone are the days of the memorized spelling lists (those never worked very well for me anyway!), now students investigate words by breaking them down with word matrices and studying the etymology of their pieces.

Does this sound a little time consuming? Perhaps, but keep in mind that instead of learning the definitions and spelling of words individually and in isolation, students learn the roots of words that will help them understand why words are spelled the way they are, and help them infer the meaning of new words they’ve never seen before. In my opinion, that’s time well spent! (If you’re interested in learning more, check out the websites for Real Spelling and Structured Word Inquiry)

Scientific vocabulary, with its linguistic origins rooted deeply in Latin and Greek, is perfect for this kind of word inquiry. So this year I’ve teamed up with Katrina, our talented elementary Language Arts coordinator, to create a video series we call Scientifically Speaking. (Before you get all Kahn-descending about  educational videos, please read my previous post on how videos can be used effectively.) The goal of Scientifically Speaking is to introduce the meaning of scientific words in an entertaining and memorable way, as a prelude or review to student-led word inquiry. In other words (no pun intended), the videos can be used by teachers to being a word study lesson that will investigate the meaning and spelling of other related words, or use them to review familiar words in a meaningful way.

Here’s a couple of the first Scientifically Speaking episodes we created for a 3rd grade unit on light:

For more Scientifically Speaking videos about ecosystems, life cycles, and the water cyclecheck out my Vimeo page. For more details about how to do a scientific word study, check out Pete Bower’s Scientifically Speaking page.

Read Full Post »

I’m moving on up to teach Middle School next year, so this will be my last 5th grade science fair for the foreseeable future. After 8 years of overseeing these fairs, I’ve generated a ton of schedules, forms, letters, worksheets- all the structural stuff that I’m going to be passing on to my replacement next year. Unfortunately, no matter how much I want this transition to go smoothly- I realized today that the most important element of the entire fair can’t be forwarded in an email or printed out in a binder: it’s the careful coaching that I do with students in short face-to-face meetings over the course of the science fair preparations.

Thinking about it now, I probably should have recorded some of these conversations, because it would be much more interesting and informative than just sharing my recollections and impressions- but that will have to be another project for another time! To give you an idea of what this kind of science fair coaching looks like, here’s a recreation of a typical conversation that I had with a team of students who were investigating how different liquids affected the amount of rust that forms on steel:

  • Teacher: So what are you going to measure to compare the amount of rust?
  • Students: How long the rust is.
  • T: What tool are you going to use to do that?
  • S: A ruler. With centimeters.
  • T: OK- so let’s say your blob of rust looks like this (I draw a blobby shape on a piece of paper). How would you measure that?
  • S: Like how long it is. From here to here (pointing at two ends of the rust).
  • T: Why not here to here? (pointing at different ends of the rust). You see how this is going to be tricky? What if the rust looks like this (draw another blobby shape, smaller but longer)? Which blob of rust is bigger?
  • S: This one. (pointing at the first blob)
  • T: But the second one is longer, right? So what else could you measure?
  • S: We could do how long and how tall maybe. 
  • T: Length and height… so you would be figuring out area then instead, right? So instead of just measuring centimeters, you would be measuring square centimeters, like this (draw a square centimeter). But are your blobs of rust going to be perfect squares?
  • S: No, but we could estimate it. 
  • M: OK, that’s a good idea, you could try to figure out how many square centimeters each blob of rust. So how would you figure out this blob (pointing at the first blob on the paper)?
  • S: Like this (starts drawing square centimeters inside the blob), and count how many fit inside.
  • M: Good thinking, but won’t that take a long time? Instead of drawing square centimeters yourself, is there a way you could use something with the squares centimeters already drawn on them? Like a piece of graph paper? How could you use that to make your measurements easier?
  • S: (after some thought) We could trace the rust on the paper- and then just count them up! …But what about if only part of a square is full? 
  • M: Hmmm…. what do you think you should do? 
  • S: What if we only count the ones that are mostly full.
  • M: That sounds like a good rule for estimating. I think you have a good plan now, why don’t you try it out and see how if it works?

And now for some “post-game analysis”- here’s what I think makes these kind of coaching conversations work so well:

  • Leading from behind: The most difficult thing for me to learn as a science fair coach was how to lead a team of students without…  err… leading. It’s a tricky tension: we want our students to be active learners and experience inquiry-based learning, but our students don’t have the skills or understanding to go the distance independently. So yes, the teacher still has to take the lead to guide students through the process, but it’s a subtle kind of leading puts the students out in front so they have a feeling of ownership and an opportunity to make decisions (and mistakes). In the example above, obviously the students are going to run into problems trying to measure the length of several irregular shapes, and there’s no point in having them waste hours of time doing that to “teach them a lesson” (if students spend hours collecting data, they will cling to it for dear life no matter how “bad” you may explain it is later!). Instead I have them think it through beforehand and come up with a better solution. Notice that I’m while I’m driving the conversation towards this solution the entire time, it’s the students that are actually making the decisions. The best analogy I can come up with is driver’s ed: the students are at the wheel, but all the while the teacher is there to keep students focused on what’s important, and if necessary you have the ability to slam on the brakes.
  • Just right and just-in-time: My science fair coaching style is not a constant peppering of students with questions and suggestions- if you coach that way students will tune you out as faster than a nagging parent! Instead I pick 3 critical points to have these face-to-face conversations: when students have brainstormed their experimental questions, when students have written a rough draft of their procedure, and when they have collected their data (before analyzing it). That’s it. In between these points there’s plenty of modeling with exemplar science fair reports and example experiments in class, but the actual science fair work along the way is done without anyone looking over their shoulder. This way students truly do have ownership of their experiment, and have the opportunity to make plenty of mistakes! For example, the rough draft procedures are almost universally terrible when we meet- but that’s OK. As a teacher I can hone in on the most important issues to address, and lead from behind to guide student’s learning to improve their procedure before they start experimenting.
  • Student-centered learning should be… STUDENT centered: The last important aspect of successful coaching is more of a philosophy than a strategy. As science teachers we can’t help but have an idea in our mind of what a perfect science fair experiment looks like… the kind that impresses the judges, wins the Google Science Fair and gets our name in the paper. Part of us would love to stroll through our science fair and see table after table of these perfect clones- wouldn’t that be a successful science fair? Maybe in a teacher’s eyes, but of course our real goal is student learning, and that will only be successful if that students actually have a chance to learn! In my mind the most successful science fair experiments are the ones that inspired the most learning and sparked the most interest in scientific inquiry. These may not be the ones with the most polished poster or the most “scientific” topic. In fact often these will be the experiments where the students ran into the most problems with their procedure or data. At the end of the day though, with careful coaching these students will have learned far more than by following someone else’s directions on ScienceFairProjects.com, and they will be able to demonstrate that learning by explaining the problems they overcame (and the ones they could not).

Read Full Post »

Older Posts »